发明名称 Heat-dissipating structure having embedded support tube to form internally recycling heat transfer fluid and application apparatus
摘要 The invention is provided with a support tube (101) and an inner tube (103) installed inside thereof, the diameter differentiation between the inner diameter of the support tube (101) and the outer diameter of the inner tube (103) is formed with a partitioned space for constituting a fluid path, the upper tube of the support tube (101) is installed with an electric energy application device assembly (108), and through the fluid pump (105) serially installed on the heat transfer fluid path to pump the heat transfer fluid to form a closed recycling flow, and through passing the support tube (101) of the mentioned closed recycling heat transfer fluid path and the exposed portion at the outer surface of the relevant structure, thereby enabling to perform temperature equalizing operation with the external gaseous or solid or liquid environment and/or the soil or liquid of the shallow ground natural thermal energy body.
申请公布号 US2015000875(A1) 申请公布日期 2015.01.01
申请号 US201313927220 申请日期 2013.06.26
申请人 Yang Tai-Her 发明人 Yang Tai-Her
分类号 F28D1/053;F28D7/12 主分类号 F28D1/053
代理机构 代理人
主权项 1. A heat-dissipating structure having embedded support tube to form internally recycling heat transfer fluid and application apparatus, which is installed in the ground soil or liquid of a shallow ground natural thermal energy body for performing temperature equalizing operation with the external gaseous or solid or liquid environment and/or the soil or liquid of the shallow ground natural thermal energy body, the interior of a support tube (101) is installed with an inner tube (103) for being penetrated through, the inner diameter of the support tube (101) is greater than the outer diameter of the inner tube (103), the partitioned space formed through the diameter differentiation allows a fluid path to be formed, the distal end of the support tube (101) is sealed, the distal end of the inner tube (103) is shorter than the distal end of the support tube (101) or preformed with fluid holes, the distal ends of both tubes are formed with a flow returning segment allowing the heat transfer fluid to be returned; The front tube port of the support tube (101) and the front tube port of the inner tube (103) allow the heat transfer fluid passing an electric energy application device assembly (108) and/or a heat dissipater thereof to be transferred, wherein one of the tube ports allows the heat transfer fluid to be transferred for passing the electric energy application device assembly (108) and/or the heat dissipater thereof, and the other tube port allows the heat transfer fluid which already passed the electric energy application device assembly (108) and/or the heat dissipater thereof to be returned; One or more than one of fluid pumps (105) are serially installed on the mentioned closed recycling heat transfer fluid path, the flowing direction thereof can be selected from one flowing direction or two flowing directions enabled to be switched or periodically changed; The structure of the heat transfer fluid path formed between the mentioned electric energy application device assembly (108) and/or the heat dissipater thereof and the support tube (101) and the inner tube (103) includes one or more than one of followings: (a) the interior of the electric energy application device assembly (108) is formed with one or more than one of penetrating heat transfer fluid paths connected in serial or in parallel, the fluid inlet port and the fluid outlet port are respectively communicated with the tube port of the support tube (101) and the tube port of the inner tube (103); (b) the heat dissipater installed in the electric energy application device assembly (108) is formed with one or more than one of penetrating heat transfer fluid paths connected in parallel, the fluid inlet port and the fluid outlet port are respectively communicated with the tube port of the support tube (101) and the tube port of the inner tube (103); (c) one or more than one of heat transfer fluid paths formed in the interior of the electric energy application device assembly (108) are connected in serial or in parallel with the heat transfer fluid paths formed in the heat dissipater thereof, the fluid inlet port and the fluid outlet port are respectively communicated with the tube port of the support tube (101) and the tube port of the inner tube (103); (d) the electric energy application device assembly (108) is formed with two or more than two of heat transfer fluid paths connected through external tubes so as to form the fluid inlet port and the fluid outlet port respectively communicated with the tube port of the support tube (101) and the tube port of the inner tube (103), or the interior thereof is bent to the U-like shape or L-like shape, the fluid inlet port and the fluid outlet port at the same or different sides are respectively communicated with the tube port of the support tube (101) and the tube port of the inner tube (103); (e) the exterior of the electric energy application device assembly (108) is installed with a sealed housing, thereby forming a space between the above two for allowing the heat transfer fluid to pass, the electric energy application device assembly (108) is formed with one or more than one of heat transfer fluid paths connected in serial or in parallel, one end thereof is formed with a heat transfer fluid inlet/outlet port which is leaded to the tube port of the inner tube (103), the tube port at the other end is leaded to the space formed between the housing and the electric energy application device assembly (108), a heat transfer fluid connection port is formed on the sealed housing for being communicated with the tube port of the support tube (101); (f) a sealed space allowing the heat transfer fluid to pass is formed between the electric energy application device assembly (108) and the heat dissipater thereof and the installed housing, the electric energy application device assembly (108) and/or the heat dissipater thereof is formed with one or more than one of heat transfer fluid paths connected in serial or in parallel, one end thereof is formed with a heat transfer fluid inlet/outlet port which is leaded to the tube port of the inner tube (103), the tube port at the other end is leaded to the space formed between the housing and the electric energy application device assembly (108) and/or the heat dissipater thereof, a heat transfer fluid inlet/outlet port is formed on the sealed housing for being communicated with the tube port of the support tube (101); (g) a sealed housing is jointly formed by the exterior of the electric energy application device assembly (108) and/or the heat dissipater thereof and the matched housing, the interior of the electric energy application device assembly (108) and/or the heat dissipater thereof and the matched housing is formed with a space allowing the heat transfer fluid to pass and leaded to the tube port of the support tube (101), the electric energy application device assembly (108) and/or the heat dissipater thereof is formed with one or more than one of heat transfer fluid paths connected in serial or in parallel, one end thereof is formed with a heat transfer fluid connection port which is leaded to the tube port of the inner tube (103), the tube port at the other end is leaded to the space formed between the housing and the electric energy application device assembly (108) and/or the heat dissipater thereof, a heat transfer fluid connection port is formed on the sealed housing for being communicated with the tube port of the support tube (101); The gaseous or liquid heat transfer fluid pumped by the fluid pump (105) passes the support tube (101) of the closed recycling heat transfer fluid path and the exposed portion of the relevant structure, thereby enabling to perform temperature equalizing operation with the external gaseous or solid or liquid environment and/or the soil or liquid of the shallow ground natural thermal energy body; The mentioned electric energy application device assembly (108) includes an illumination device utilizing electric energy being converted into photo energy, e.g. an illumination device adopting LED and/or a photovoltaic, e.g. a solar panel and/or a wind power generator and/or a transformer and/or a motor driven by electric energy, and peripheral devices, control circuits devices, overload protecting devices and/or temperature protection devices are optionally installed according to actual needs for assisting the operation of the electric energy application device assembly (108).
地址 Dzan-Hwa TW