发明名称 SHIFT RAIL INHIBITOR MECHANSIM FOR A TRANSMISSION
摘要 An inhibitor mechanism may include at least one first primary interlocking element and at least one second primary interlocking element each configured to selectively engage with a shift rail in at least one cavity of the shift rail to inhibit the axial movement of the respective shift rail. The inhibitor mechanism may also include at least one secondary interlocking element in contact with the at least one first primary interlocking element, and may be configured to selectively engage with another shift rail in the at least one cavity to inhibit the axial movement of that shift rail. Only one of the primary interlocking elements and the at least one secondary interlocking element may be movable to outside of the at least one cavity of the respective shift rail at one time such that only that respective shift rail is movable in the axial direction.
申请公布号 US2014165766(A1) 申请公布日期 2014.06.19
申请号 US201314105858 申请日期 2013.12.13
申请人 Eaton Corporation 发明人 Fontana Carlos
分类号 F16H59/02 主分类号 F16H59/02
代理机构 代理人
主权项 1. An inhibitor mechanism for a transmission having a plurality of shift rails, each shift rail defining at least one cavity and being configured to move in an axial direction, the inhibitor mechanism comprising: at least one first primary interlocking element and at least one second primary interlocking element each configured to selectively engage with one of the plurality of shift rails in the at least one cavity to substantially inhibit the respective shift rail from moving axially; at least one secondary interlocking element in selective contact with at least one of the at least one first primary interlocking element and the at least one second interlocking element, the at least one secondary interlocking element being configured to selectively engage with another of the plurality of shift rails in the at least one cavity to substantially inhibit the shift rail from moving axially; a spacing mechanism in contact with the at least one first primary interlocking element and the at least one second primary interlocking element, the spacing mechanism being configured to enable the movement of at least one of the at least one first primary interlocking element, the at least one second primary interlocking element, and the at least one secondary interlocking element; wherein only one of the at least one first primary interlocking element, the at least one second primary interlocking element, and the at least one secondary interlocking element is movable to outside of the at least one cavity of the respective shift rail at one time such that only that respective shift rail is movable in the axial direction.
地址 Cleveland OH US