发明名称 Static fluid mixer capable of ultrafinely mixing fluids
摘要 A static fluid mixer which can perform processing such as generation of ultrafine uniform bubbles and has small pressure loss. A static fluid mixer has mixing units having outflow openings for allowing fluid having passed through mixing flow paths to flow through the outflow openings. The mixing units are arranged in a tubular casing body at intervals in the axis direction of the casing body. Adjacent mixing units and the casing body form a flow path forming space. Each mixing unit has an annular outflow path communicating with the end of each mixing flow path. The annular outflow path is open in a ring-like form having a substantially constant width along the entire circumference. The opening at the end of the annular outflow path functions as an outflow opening connecting to the flow path forming space. In the outflow path forming space is formed a collection flow path into which liquid having passed through the mixing flow path collects after flowing from the entire circumference of the outflow opening which is open in the ring-like form and moving toward the axis of the casing body.
申请公布号 US8740450(B2) 申请公布日期 2014.06.03
申请号 US20090811969 申请日期 2009.01.09
申请人 MG Grow Up Corp.;Marufukusuisan Corp. 发明人 Mogami Kenichi;Kumazawa Hidehiro
分类号 B01F5/06 主分类号 B01F5/06
代理机构 代理人
主权项 1. A static fluid mixer capable of ultrafinely mixing fluids, the static fluid mixer comprising: a plurality of diverting parts adapted to dispose a plate-shaped second mixing element to be opposed to a plate-shaped first mixing element forming a flow inlet of a fluid at a center part thereof and to allow the fluid having flown from the flow inlet to be flown and diverted in a radiation direction; and a plurality of confluence parts adapted to flow and converge in a radiation direction the fluid having been diverted at the diverting parts, and wherein the mixing unit is provided with a flow outlet for flowing the fluid having passed through the mixing flow path, wherein: the first mixing element integrally forms a circumferential wall part in a protrusive shape all over an entire circumference, at a circumferential edge part of one side face of an element main body formed in a plate shape, forming a recessed part by the circumferential wall part and the element main body; the second mixing element is disposed to be face-to-face opposed to the element main body in the recessed part, allowing an annular outflow path opening in a ring shape to be formed at substantially predetermined intervals all over an entire circumference, between an inner circumference face of a circumferential wall part of the first mixing element and an outer circumference end face of the second mixing element, a trailer opening of the annular outflow path being formed as a flow outlet, constituting a mixing unit; the mixing unit is disposed in plurality at intervals in an axial direction in a cylindrical casing main body, allowing an inner circumferential face of the casing main body to be brought into contact with facial intimate contact with an outer circumferential face of the circumferential wall part of the first mixing element, allowing a flow path forming space communicating with the annular outflow path to be formed by mixing units adjacent to each other and the casing main body; and a collecting flow path is formed in the flow path forming space so that the fluid having passed through the mixing flow path flows out equally from the entire circumference of the flow outlet opening in the ring shape, and then, flows and gathers to an axial core side of the casing main body, in which in the flow path forming space, a plurality of guide members stabilizing a flow path sectional area are arranged in vicinity of a flow outlet opening in a ring shape and at an axial core side of a casing main body, allowing the guide members to be disposed at intervals in a circumferential direction along a flow outlet, thereby forming a collecting flow path between the guide members adjacent thereto, whereas forming an annular communication path extending in a circumferential direction along an inner circumferential face side of the casing main body;a leader part of the collecting flow path is connected to an inner circumferential face part of the annular communication path, allowing the collecting flow path to communicate with the flow outlet via the annular communication path;a mixing unit disposes and constitutes a collecting-flow-path forming element at a rear side of a second mixing element, and the collecting-flow-path forming element forms an extensive guide member stabilizing a flow path sectional area on one side face of an element main body;a plurality of mixing units are disposed at intervals in an axial direction in a casing main body formed in a cylindrical shape, allowing first and second mixing elements and a collecting flow path forming element, constituting the mixing units, to be formed in a disk shape;a guide member provided in the collecting-flow-path forming element is formed, in a substantially arc-shaped flat shape, of an outer circumferential arc face formed on an arc face having a same curvature as that of an outer circumferential edge of an element main body, a pair of side faces connected to be extended from both ends of the outer circumferential arc face to a center side of the element main body, and an abutment face formed as a flat face parallel to the element main body; andthe guide body is disposed in plurality at equal intervals in a circumferential direction at a circumferential part of the element main body, and is formed so that: an outer circumferential arc face of each of the guide members is flush with an outer circumferential end face of the collecting-flow-path forming element and an outer circumferential end face of the second mixing element; and side faces opposite to each other, of the adjacent guide members, are parallel to each other in a circumferential direction, allowing a groove part width of a groove part, which is formed of a side face of an adjacent guide member and a rear face of the element main body, to be substantially equal from a circumferential side to a center side of the collecting-flow-path forming element.
地址 Fukuoka JP