发明名称 Coolant Distribution Structure For Monolithic Microwave Integrated Circuits (MMICs)
摘要 A coolant distribution structure for an MMIC having: an input/output layer with an input port for receiving a coolant for transmission to coolant channels in the MMIC and an output port for exiting the coolant after such coolant has cooled active devices in the MMIC, a coolant pass-through layer to receive the coolant from the input port and having structure to inhibit such received coolant from passing directly to the output port, a coolant distribution layer for receiving coolant passing from the coolant pass-through layer and distributing such received coolant to the cooling channels to absorb heat generated by the active devices and then directing heated coolant to the coolant distribution layer and out of the porting layer via the passthrough layer. The coolant pass-through layer has a structure configured to inhibit such heated coolant from passing directly to the input port prior to such heated absorbed coolant being transmitted to the output port.
申请公布号 US2016365300(A1) 申请公布日期 2016.12.15
申请号 US201514734372 申请日期 2015.06.09
申请人 Raytheon Company 发明人 Gupta Anurag;Altman David H.;Milne Jason G.;Koontz Christopher R.
分类号 H01L23/473;H01L23/373;H01L23/367;H01L23/66 主分类号 H01L23/473
代理机构 代理人
主权项 1. A coolant distribution structure for an integrated circuit, the integrated circuit having a substrate with an active device layer on an top surface of the substrate and a plurality of coolant channels formed in a bottom surface of the substrate, the coolant distribution structure comprising: plurality of stacked, parallel layers, a first one of the layers being an input/output port layer, a second one of the layers being a coolant pass-through layer; and a third one of the layers being a coolant distribution layer, the coolant pass-through layer being disposed between the input/output port layer, and the coolant distribution layer, each one of the layers having a plurality of slots therein; wherein: the plurality of slots in the input/output layer provide at least one input port for receiving a coolant for transmission to the plurality of coolant channels and an output port for exiting the coolant after such coolant has cooled active devices in the active device layer;the coolant pass-through layer is disposed on the input/output port layer and wherein: a first portion of the plurality of slots therein receive the coolant from the at least one input port and having a input transmission structure portion configured to inhibit such received coolant from passing directly to the output port of the input/output port layer prior to such received coolant being transmitted to the plurality of coolant channels through the coolant distribution layer, the coolant distribution layer inhibiting the coolant received by the first portion of the slots from passing directly to the plurality of channels, anda second portion of the slots therein pass coolant, after passing through the coolant channels, to the output port through the pass-through layer;the coolant distribution layer is disposed between the coolant pass-through layer and mounted to the bottom surface of the substrate for distributing the coolant passing through the slots in the coolant distribution layer to the plurality of coolant channels, and wherein one portion of the slots in the coolant distribution layer receive coolant passing from the first portion of the slots in the coolant pass-through layer and distribute such received coolant to the plurality of coolant channels to absorb heat generated by the active devices, and then direct heated coolant back to the coolant pass-through layer through a second portion of the slots in the coolant distribution layer; and wherein the coolant pass-through layer has an output transmission structure portion configured to inhibit such heated coolant from passing directly to the input port of the input/output port layer prior to such heat absorbed coolant being transmitted to the output port of the input/output port layer.
地址 Waltham MA US