发明名称 SCAN DRIVING CIRCUIT FOR OXIDE SEMICONDUCTOR THIN FILM TRANSISTOR
摘要 The invention provides a scan driving circuit for an oxide semiconductor thin film transistor. The scan driving circuit for an oxide semiconductor thin film transistor includes multiple cascade connected GOA units and a shared auxiliary inverter. Each of the GOA units includes a main inverter. The auxiliary inverter is electrically connected to each main inverter to form corresponding pull-down holding parts for the respective GOA units, which can achieve the sharing of the pull-down holding parts of the multiple stages GOA units, the number of TFT elements can be reduced and therefore GOA layout space as well as circuit power consumption can be reduced.
申请公布号 US2016343336(A1) 申请公布日期 2016.11.24
申请号 US201514437828 申请日期 2015.01.12
申请人 SHENZHEN CHINA STAR OPTOELECTRONICS TECHNOLOGY CO., LTD. 发明人 DAI Chao
分类号 G09G3/36 主分类号 G09G3/36
代理机构 代理人
主权项 1. A scan driving circuit for an oxide semiconductor thin film transistor, the scan driving circuit comprising cascade connected P numbers of GOA units, each of the GOA units comprising a pull-up control part, a pull-up part, a transfer part, a first pull-down part, a bootstrap capacitor part and a main inverter part; wherein the scan driving circuit further comprises a common auxiliary inverter, the main inverter part in each stage connection relationship is electrically connected to the auxiliary inverter to form a pull-down holding part of a corresponding one of the GOA units; P, N are set to be positive integers, and N≦P; in an Nth stage connection relationship, the main inverter part comprises: a fifty-first transistor (T51), a gate and a drain of the fifty-first transistor both being electrically connected to a constant high potential (DCH), and a source of the fifty-first transistor being electrically connected to a fourth node (S(N));a fifty-second transistor (T52), a gate of the fifty-second transistor being electrically connected to a first node (Q(N)), a drain of the fifty-second transistor being electrically connected to the fourth node (S(N)), and a source of the fifty-second transistor being electrically connected to a first negative potential (VSS1);a fifty-third transistor (T53), a gate of the fifty-third transistor being electrically connected to the fourth node (S(N)), a drain of the fifty-third transistor being electrically connected to the constant high potential (DCH), and a source of the fifty-third transistor being electrically connected to a second node (P(N));a fifty-fourth transistor (T54), a gate of the fifty-fourth transistor being electrically connected to the first node (Q(N)), a drain of the fifty-fourth transistor being electrically connected to the second node (P(N)), and a source of the fifty-fourth transistor being electrically connected to a third node (K); the auxiliary inverter comprises: a seventy-third transistor (T73), a gate of the seventy-third transistor being electrically connected to the fourth node (S(1)) of the main inverter part in a first stage connection relationship, and a drain of the seventy-third transistor being electrically connected to the constant high potential (DCH);a seventy-fourth transistor (T74), a gate of the seventy-fourth transistor being electrically connected to the fourth node (S(P)) of the main inverter part in a last stage connection relationship, a drain of the seventy-fourth transistor being electrically connected to the third node (K), and a source of the seventy-fourth transistor being electrically connected to a source of the seventy-third transistor (T73);a seventy-fifth transistor (T75), a gate of the seventy-fifth transistor being electrically connected to the first node (Q(1)) of the main inverter part in the first stage connection relationship, a drain of the seventy-fifth transistor being electrically connected to the third node (K), and a source of the seventy-fifth transistor being electrically connected to a constant low potential (DCL);a seventy-sixth transistor (T76), a gate of the seventy-sixth transistor being electrically connected to the first node (Q(P)) of the main inverter part in the last stage connection relationship, a drain of the seventy-sixth transistor being electrically connected to the constant low potential (DCL), and a source of the seventy-sixth transistor being electrically connected to the third node (K); the pull-up part comprises: a twenty-first transistor (T21), a gate of the twenty-first transistor being electrically connected to the first node (Q(N)), a drain of the twenty-first transistor being electrically connected to a clock signal (CK(n)), and a source of the twenty-first transistor being electrically connected to an output terminal (G(N)); the transfer part comprises: a twenty-second transistor (T22), a gate of the twenty-second transistor being electrically connected to the first node (Q(N)), a drain of the twenty-second transistor being electrically connected to a clock signal (CK(M)), and a source of the twenty-second transistor being electrically connected to a drive output terminal (ST(N)); wherein a first waveform of a signal output of the first node (Q(1)) in the first stage connection relationship of the scan driving circuit is “” shaped, a second waveform of the signal output of the first node (Q(P)) in the last stage connection relationship of the scan driving circuit is “” shaped, and the auxiliary inverter is controlled according to a signal corresponding to an overlapped portion of the first waveform with the second waveform.
地址 Shenzhen City, Guangdong CN