发明名称 一种六氟化硫高压断路器状态智能监测与健康管理系统
摘要 一种SF6高压断路器智能监测与健康管理系统由硬件和软件两部分构成:该硬件分为下位机和上位机;下位机硬件包括基于FPGA和ARM的智能控制及处理单元、数据采集单元、数据存储单元、智能控制输出单元、CAN总线通讯单元;上位机硬件由监控中心服务器单元和PCI 1680U板卡组成,上位机和下位机通过CAN总线网络实现通讯。该软件也分为下位机和上位机;下位机软件负责驱动下位机硬件完成机械、电气、绝缘状态数据采集和特征提取,结合系统信息实现智能推理及智能控制,驱动CAN总线通讯单元将处理后的结果一起发送到上位机;上位机软件负责驱动上位机PCI 1680U板卡完成通讯,并实现人机交互界面和智能化监测信息管理。它实现了对SF6高压断路器状态及性能的全面监测。
申请公布号 CN101825894B 申请公布日期 2012.07.18
申请号 CN201010167335.4 申请日期 2010.04.30
申请人 北京航空航天大学 发明人 胡晓光;黄建
分类号 G05B19/418(2006.01)I 主分类号 G05B19/418(2006.01)I
代理机构 北京慧泉知识产权代理有限公司 11232 代理人 王顺荣;唐爱华
主权项 一种SF6高压断路器状态智能监测与健康管理系统,其特征在于:它由硬件结构和软件结构两大部分构成;该硬件结构分为下位机和上位机两部分,其之间的关系是:下位机安装在现场SF6高压断路器机构柜台下,上位机安装在主控室电力测量柜台上,它们之间通过CAN总线网络实现通讯;其中,下位机硬件负责数据的采集、处理及传输,下位机硬件部分包括基于FPGA和ARM的智能控制及处理单元、数据采集单元、智能控制输出单元、数据存储单元及CAN总线通讯单元;它们之间的逻辑关系是:基于FPGA和ARM的智能控制及处理单元控制数据采集单元采集数据,并将数据存入数据存储单元,存储完毕后,基于FPGA和ARM的智能控制及处理单元调用数据存储单元的数据进行处理及智能推理,并将智能推理结果输出至智能控制输出单元,同时,将处理后的数据通过CAN总线通讯单元传送到上位机;上位机硬件部分由监控中心服务器单元和CAN总线通讯单元即PCI1680U板卡组成,其之间的关系是:PCI1680U板卡插入监控中心服务器单元PCI插槽中,实现与下位机的通信;上位机硬件负责监测数据的接受、控制命令的发送及人机接口界面显示;相应的,软件结构也分为下位机和上位机两部分;下位机软件负责驱动下位机的硬件完成电气状态、机械状态及绝缘状态数据采集,对采集的数据采用小波分析、包络分析、经验模态分解技术及模糊推理技术的先进的信号处理技术及算法进行特征提取,计算出SF6高压断路器机构合分时间、行程、SF6压力、SF6湿度、合分线圈电流、触头磨损量和振动冲击时间参数,并结合系统状态信息执行智能推理功能实现对SF6高压断路器的智能控制及诊断;最后,下位机软件通过CAN总线通讯单元将监测处理结果发送到上位机监控中心;上位机软件负责驱动上位机CAN总线通讯单元硬件完成与下位机的数据通讯,并建立人机交互界面和实现监测信息的管理,为检修人员提供信息来源,同时结合设备历史运行信息,进行智能推理,实现对设备性能状态评估及寿命预测;所述基于FPGA和ARM的智能控制及处理单元是下位机硬件的核心,它控制数据采集单元采集电气状态、机械状态、绝缘状态信息,并将采集数据存入数据存储单元;然后,该单元调用数据存储单元中的数据完成电气状态、机械状态、绝缘状态特征参数的计算,并结合系统信息实现智能推理及智能控制功能,使它具有自动识别SF6高压断路器的工作状态、自动调整SF6高压断路器的操作信息、自动记录关键信息、自动对SF6高压断路器的元器件和操作进行诊断的能力;最后,所有监测结果通过CAN总线通讯单元向上位机监控服务中心发送;基于FPGA和ARM的智能控制及处理单元由EP3C25Q240C8N芯片和S3C2440A芯片构成,其之间的关系是:S3C2440A芯片端口E(GPE)16个I/O接口及端口F(GPF)4个I/O接口分别与EP3C25Q240C8N芯片20个I/O接口直连实现通信;EP3C25Q240C8N芯片是Altera公司的Cyclone系列大规模可编程逻辑器件,工作输入时钟频率设定为50MHz,用于对AD采集进行控制和获取I/O接口的数字信息;S3C2440A是ARM 920T内核的32位RISC微处理器,工作主频高达400MHz,它是下位机部分的核心,负责控制整个监测流程及数据处理,并传送监测结果到上位机监控服务中心;所述数据采集单元由AD7490模数转换器、数字I/O即输入输出接口、数字信号调理电路及模拟信号调理电路组成,其之间的关系是:数字传感器输出信号经过数字信号调理电路实现电平转换,并将结果输出至数字I/O接口;模拟传感器输出信号经过模拟信号调理电路 进行信号调理和滤波,并将结果输出至AD7490模数转换器进行电压转换;模拟量采集和数字I/O量采集同时进行,模拟量数据采集是传感器调理后的模拟信号,它包括行程信号、SF6压力、SF6湿度、温度、合分线圈电流、振动信号和一次电流信号;数字量数据采集是传感器调理后的数字信号,它包括开关触头位置、限位开关状态信息;这种采集结构实现多状态多参量信号的实时采集;AD7490模数转换器为16路12位精度的模数转换芯片,通过SPI接口方式与FPGA处理器相连;该数字信号调理电路由光藕、贴片电阻、退耦电容、滤波电容及普通稳压二极管组成;该模拟信号调理电路由贴片电阻、取样电阻、退耦电容、滤波电容、频率补偿电容及电压跟随器组成;所述数据存储单元由SDRAM即同步动态随机存取存储器和FLASH即闪存两种存储器组成,它们之间的位置连接关系是:通过地址总线和数据总线与外部存储器接口连接;SDRAM采用2片HY57561620 SDRAM芯片,存储容量64兆位,用来存储数据和实现上电后的应用程序加载;FLASH采用K9F1208 FLASH芯片,存储容量64兆位,用来固化bootloader引导程序和应用程序;两片HY57561620 SDRAM芯片和一片K9F1208 FLASH芯片通过地址总线和数据总线与外部存储器接口连接;基于FPGA和ARM的智能控制及处理单元通过外部存储器接口实现与数据存储单元数据的读写;所述智能控制输出单元是基于FPGA和ARM的智能控制及处理单元执行逻辑推理的输出结果,它由ARM端口G即GPG10个I/O接口和光电隔离电路组成,其之间的关系是:ARM端口G即GPG10个I/O接口输出的数字信号经光电隔离电路将低电压值转换为SF6高压断路器执行机构控制电路需要的标准电压值;ARM端口G即GPG10个I/O接口电平经过光电隔离电路驱动控制断路器动作的继电器,实现断路器在零电压下关合,在零电流下分断,从而提高断路器的分断能力;所述CAN总线通讯单元由上位机通信模块和下位机通信模块组成,它们之间通过CAN总线网络相连;下位机通信模块由MCP2515控制器和MCP2551发送器组成,负责下位机数据的发送和接受;上位机通信模块是PCI 1680U板卡,它负责接受下位机传来的数据及发送上位机控制命令;所述监控中心服务器单元是采用工控机,它用来存储、显示并管理监测的信息;所述CAN总线通讯单元是PCI1680U板卡,它直接插入工控机PCI插槽中,实现与下位机的通讯;CAN总线网络采用星型连接组网,分别对位于不同地点多台SF6高压断路器进行监测,各个下位机分别向监控中心服务器发送监测数据,监控中心服务器可实现对多个下位机的远程配置和数据接收;所述下位机软件,它是基于FPGA和ARM芯片的智能控制及处理程序,负责控制下位机的硬件实现各传感器信号采集、信号处理以及CAN总线通讯;它包括两个部分,一个是FPGA处理器程序,另一个是ARM处理器程序,其之间的关系是:FPGA处理器程序接受ARM处理器程序的控制命令实现数据采集,采集完毕后,FPGA处理器程序传送采集的数据给ARM处理器程序,并在ARM处理器程序中对数据进行分析与智能推理;该FPGA处理器程序在Windows操作系统下,使用QuarusII软件,采用Verilog语言编写,FPGA处理器外部时钟为50MHz;FPGA处理器程序分为2个处理线程,分别为数据采集线程、数据传输线程;该ARM处理器程序在嵌入式Linux操作系统平台下,采用C语言编写,用arm‑linux‑gcc编译器编译,主时钟频率为400MHz;ARM处理器程序分为4个处理线程,分别为控制线程、数据处理线程、CAN总线通信线程、智能推理线程;各线程间的关系如下:CAN总线通讯线程接收上位机的控制参数并传递给控制线程,控制线程根据这些控制参数配置数据采集线程,数据采集线程实现对信号进行采集后,启动数据传输线程,FPGA 至ARM数据传输结束后,运行数据处理线程及智能推理线程,最后将处理结果通过CAN总线通讯线程发送到上位机;所述上位机软件,采用VC++6.0编写,并利用SQL Server 2000开发后台数据库,它包括人机交互、CAN总线通讯、数据库和智能推理四部分;其之间的关系是:CAN总线通讯接受下位机数据,并将结果保存至数据库,数据保存完毕后,系统调用数据库数据进行智能推理,对故障结果进行报警提示,从而实现人机交互;人机交互功能允许操作人员查看数据库中设备运行的历史数据及通过CAN总线通讯向下位机传递控制参数实现对设备进行控制;该人机交互部分采用大液晶屏显示,支持键盘、鼠标及触摸屏输入,它负责数据及波形的显示并提供控制参数设置窗口,实现工作人员和系统的交互;该CAN总线通讯部分是PCI1680U,它由工控机负责驱动工作,实现数据的发送和接收;该数据库存储监测信息,并实现管理与查询功能;该智能推理是结合数据库中设备历史信息采用先进算法进行数据分析。
地址 100191 北京市海淀区学院路37号