发明名称 Series battery charger with the function of separate detection
摘要 A series battery charger with the function of separate detection, and more particularly a series circuit for detecting the battery charging process and for conducting a series combined discharging process on the same battery charger. The present invention provides a circuit structure capable of selectively switching to an “separate detection charging and series combined discharging mode” and a “synchronous switching control charging and discharging mode” by a synchronous changeover switch module in conjunction with charging circuits. In this way, the stored electric energy can be released for use by the series-connected separate detection charging circuits. Moreover, the charger can deliver 5V power via the standard USB interface to the 3C electronic products for the charging purpose. Meanwhile, the problems of conventional AA or AAA battery chargers and lithium batteries designed as a portable power are overcome, thereby enhancing the effect and safety of the charger.
申请公布号 US8860371(B2) 申请公布日期 2014.10.14
申请号 US201113164902 申请日期 2011.06.21
申请人 Samya Technology Co., Ltd. 发明人 Yang Fu-I
分类号 H02J7/00 主分类号 H02J7/00
代理机构 Rosenberg, Klein & Lee 代理人 Rosenberg, Klein & Lee
主权项 1. A series battery charger with a circuit for a series battery charging process and for a series combined synchronous discharging process, comprising: a casing, for containing a charging component, and having a charging block disposed on a surface of the casing, a plurality of charging compartments formed in the charging block for placing a plurality of batteries respectively, and a first end of the charging compartment being a positive terminal, and a second end of the charging compartment being a negative terminal, and the casing having a plug connectable to an external power source; an input power source provided for converting an AC or DC power from the external power source to a DC power and supplying a reference voltage source to a control integrated circuit (IC), a current control unit and a voltage control unit being interposed between an input terminal of the control IC and the input power source, thereby creating a first charging circuit for charging the batteries in the charging block; the batteries within the charging block connected in series, each of the batteries is connected to a second charging circuit in parallel with a switch element, an anti-adverse-current element being interposed between the switch element and a positive terminal of each battery, wherein the control IC separately applies a terminal voltage to the positive terminal of each of the batteries for the purpose of detection such that each switch elements is switched ON as each battery is fully charged, whereby a charging current (Ic) can be used for a further charging process of partially charged batteries; a synchronous changeover switch module provided for switching each second charging circuit in a series charging mode or a discharging mode, the synchronous changeover switch module having a number of interposed switching units, wherein each interposed switching unit is respectively interposed between two series-connected second charging circuits, and wherein a last switching unit of the synchronous changeover switch module is an independent charging/discharging control unit, and wherein each of the interposed and last switching units has three contacts, and wherein a first contact of the interposed switching units is connected to the switch element of the corresponding second charging circuit and to the front end of the anti-adverse-current element of an adjacent second charging circuit, and wherein a second contact is respectively connected to the positive terminal of the battery of the adjacent second charging circuit, and wherein a third contact is electrically connected to the negative terminal of the battery of the corresponding second charging circuit, and wherein a first contact of the last switching unit serving as the charging/discharging control unit is a charging control terminal while a second contact of the last switching unit is a discharging control terminal, and a third contact of the last switching unit is a power control terminal (CONTROL H/L) for connection to the input power source or for grounding, and wherein the third contact of the last switching unit is electrically connected to one of the first or second contacts of the last switching unit when the synchronous changeover switch module is switched to one of the charging and discharging modes; a charging control circuit, composed of a first contact and a second contact of the charging/discharging control unit, and electrically coupled to the input power source, for controlling the ON/OFF state of the input power source or outputting a charging power to the charging block; a discharging control switch, comprising an input terminal, an output terminal and a control terminal, and the input terminal being coupled to a positive of the second charging circuit/compartment in the terminal the charging block corresponding to the first battery, and the output terminal being coupled to a voltage regulator circuit, and the control terminal being electrically coupled to a third contact of the charging/discharging control unit, for controlling the ON/OFF state of the input terminal and the output terminal, such that a series-connected and combined discharging current of each battery in the charging block is outputted to the voltage regulator circuit; and at least one USB output port, coupled to an output terminal of the voltage regulator circuit; wherein the voltage regulator circuit boosts or steps down the input power to a predetermined DC voltage; when the synchronous changeover switch module switches to a charging mode, each third contact and each first contact of all interposed and last switching units are turned to an ON state synchronously, such that each battery on each second charging circuit is in the series-connected separate detection charging mode, and the discharging control switch is turned to the OFF state synchronously, and the charging control circuit is controlled to turn to an ON state to charge each battery by the charging current; and when the synchronous changeover switch module switches to a discharging mode, each third contact and each second contact of all interposed and last switching units are turned to an ON state synchronously, such that each battery on each second charging circuit is in the series-connected combined synchronous discharging mode, and the charging control circuit is turned to the OFF state and the discharging control switch is turned to the ON state synchronously, such that each battery is series-connected to output the discharging current.
地址 Taoyuan County TW